Run this notebook online:Binder or Colab: Colab

12.3. 多GPU训练

到目前为止,我们讨论了如何在CPU和GPU上高效地训练模型,同时在 Section 12.1中展示了深度学习框架如何在CPU和GPU之间自动地并行化计算和通信,还在 Section 5.5中展示了如何使用nvidia-smi命令列出计算机上所有可用的GPU。 但是我们没有讨论如何真正实现深度学习训练的并行化。 是否一种方法,以某种方式分割数据到多个设备上,并使其能够正常工作呢? 本节将详细介绍如何从零开始并行地训练网络, 这里需要运用小批量随机梯度下降算法(详见 Section 11.5)。 后面我还讲介绍如何使用高级API并行训练网络(请参阅 Section 12.4)。

12.3.1. 问题拆分

我们从一个简单的计算机视觉问题和一个稍稍过时的网络开始。 这个网络有多个卷积层和汇聚层,最后可能有几个全连接的层,看起来非常类似于LeNet [LeCun et al., 1998]或AlexNet [Krizhevsky et al., 2012]。 假设我们有多个GPU(如果是桌面服务器则有\(2\)个,AWS g4dn.12xlarge上有\(4\)个,p3.16xlarge上有\(8\)个,p2.16xlarge上有\(16\)个)。 我们希望以一种方式对训练进行拆分,为实现良好的加速比,还能同时受益于简单且可重复的设计选择。 毕竟,多个GPU同时增加了内存和计算能力。 简而言之,对于需要分类的小批量训练数据,我们有以下选择。

第一种方法,在多个GPU之间拆分网络。 也就是说,每个GPU将流入特定层的数据作为输入,跨多个后续层对数据进行处理,然后将数据发送到下一个GPU。 与单个GPU所能处理的数据相比,我们可以用更大的网络处理数据。 此外,每个GPU占用的显存(memory footprint)可以得到很好的控制,虽然它只是整个网络显存的一小部分。

然而,GPU的接口之间需要的密集同步可能是很难办的,特别是层之间计算的工作负载不能正确匹配的时候, 还有层之间的接口需要大量的数据传输的时候(例如:激活值和梯度,数据量可能会超出GPU总线的带宽)。 此外,计算密集型操作的顺序对于拆分来说也是非常重要的,这方面的最好研究可参见 [Mirhoseini et al., 2017],其本质仍然是一个困难的问题,目前还不清楚研究是否能在特定问题上实现良好的线性缩放。 综上所述,除非存框架或操作系统本身支持将多个GPU连接在一起,否则不建议这种方法。

第二种方法,拆分层内的工作。 例如,将问题分散到\(4\)个GPU,每个GPU生成\(16\)个通道的数据,而不是在单个GPU上计算\(64\)个通道。 对于全连接的层,同样可以拆分输出单元的数量。 Section 12.3.1描述了这种设计,其策略用于处理显存非常小(当时为2GB)的GPU。 当通道或单元的数量不太小时,使计算性能有良好的提升。 此外,由于可用的显存呈线性扩展,多个GPU能够处理不断变大的网络。

由于GPU显存有限,原有AlexNet设计中的模型并行

然而,我们需要大量的同步或屏障操作(barrier operation),因为每一层都依赖于所有其他层的结果。 此外,需要传输的数据量也可能比跨GPU拆分层时还要大。 因此,基于带宽的成本和复杂性,我们同样不推荐这种方法。

最后一种方法,跨多个GPU对数据进行拆分。 这种方式下,所有GPU尽管有不同的观测结果,但是执行着相同类型的工作。 在完成每个小批量数据的训练之后,梯度在GPU上聚合。 这种方法最简单,并可以应用于任何情况,同步只需要在每个小批量数据处理之后进行。 也就是说,当其他梯度参数仍在计算时,完成计算的梯度参数就可以开始交换。 而且,GPU的数量越多,小批量包含的数据量就越大,从而就能提高训练效率。 但是,添加更多的GPU并不能让我们训练更大的模型。

在多个GPU上并行化。从左到右:原始问题、网络并行、分层并行、数据并行

Section 12.3.1中比较了多个GPU上不同的并行方式。 总体而言,只要GPU的显存足够大,数据并行是最方便的。 有关分布式训练分区的详细描述,请参见 [Li et al., 2014]。 在深度学习的早期,GPU的显存曾经是一个棘手的问题,然而如今除了非常特殊的情况,这个问题已经解决。 下面我们将重点讨论数据并行性。

12.3.2. 数据并行性

假设一台机器有\(k\)个GPU。 给定需要训练的模型,虽然每个GPU上的参数值都是相同且同步的,但是每个GPU都将独立地维护一组完整的模型参数。 例如, Section 12.3.2演示了在\(k=2\)时基于数据并行方法训练模型。

利用两个GPU上的数据,并行计算小批量随机梯度下降

一般来说,\(k\)个GPU并行训练过程如下:

  • 在任何一次训练迭代中,给定的随机的小批量样本都将被分成\(k\)个部分,并均匀地分配到GPU上。

  • 每个GPU根据分配给它的小批量子集,计算模型参数的损失和梯度。

  • \(k\)个GPU中的局部梯度聚合,以获得当前小批量的随机梯度。

  • 聚合梯度被重新分发到每个GPU中。

  • 每个GPU使用这个小批量随机梯度,来更新它所维护的完整的模型参数集。

在实践中请注意,当在\(k\)个GPU上训练时,需要扩大小批量的大小为\(k\)的倍数,这样每个GPU都有相同的工作量,就像只在单个GPU上训练一样。 因此,在16-GPU服务器上可以显著地增加小批量数据量的大小,同时可能还需要相应地提高学习率。 还请注意, Section 7.5中的批量规范化也需要调整,例如,为每个GPU保留单独的批量规范化参数。

12.3.3. 小结

  • 有多种方法可以在多个GPU上拆分深度网络的训练。拆分可以在层之间、跨层或跨数据上实现。前两者需要对数据传输过程进行严格编排,而最后一种则是最简单的策略。

  • 数据并行训练本身是不复杂的,它通过增加有效的小批量数据量的大小提高了训练效率。

  • 在数据并行中,数据需要跨多个GPU拆分,其中每个GPU执行自己的前向传播和反向传播,随后所有的梯度被聚合为一,之后聚合结果向所有的GPU广播。

  • 小批量数据量更大时,学习率也需要稍微提高一些。

12.3.4. 练习

  1. \(k\)个GPU上进行训练时,将批量大小从\(b\)更改为\(k \cdot b\),即按GPU的数量进行扩展。

  2. 比较不同学习率时模型的精确度,随着GPU数量的增加学习率应该如何扩展?

  3. 实现一个更高效的allreduce函数用于在不同的GPU上聚合不同的参数?为什么这样的效率更高?

  4. 实现模型在多GPU下测试精度的计算。