Run this notebook online: or Colab:
14.3. 用于预训练词嵌入的数据集¶
现在我们已经了解了word2vec模型的技术细节和大致的训练方法,让我们来看看它们的实现。具体地说,我们将以 Section 14.1的跳元模型和 Section 14.2的负采样为例。在本节中,我们从用于预训练词嵌入模型的数据集开始:数据的原始格式将被转换为可以在训练期间迭代的小批量。
%load ../utils/djl-imports
%load ../utils/plot-utils
%load ../utils/Functions.java
%load ../utils/PlotUtils.java
%load ../utils/StopWatch.java
%load ../utils/Accumulator.java
%load ../utils/Animator.java
%load ../utils/Training.java
%load ../utils/timemachine/Vocab.java
import java.util.stream.*;
import org.apache.commons.math3.distribution.EnumeratedDistribution;
NDManager manager = NDManager.newBaseManager();
14.3.1. 正在读取数据集¶
我们在这里使用的数据集是Penn Tree Bank(PTB)。该语料库取自“华尔街日报”的文章,分为训练集、验证集和测试集。在原始格式中,文本文件的每一行表示由空格分隔的一句话。在这里,我们将每个单词视为一个词元。
public static String[][] readPTB() throws IOException {
String ptbURL = "http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip";
InputStream input = new URL(ptbURL).openStream();
ZipUtils.unzip(input, Paths.get("./"));
ArrayList<String> lines = new ArrayList<>();
File file = new File("./ptb/ptb.train.txt");
Scanner myReader = new Scanner(file);
while (myReader.hasNextLine()) {
lines.add(myReader.nextLine());
}
String[][] tokens = new String[lines.size()][];
for (int i = 0; i < lines.size(); i++) {
tokens[i] = lines.get(i).trim().split(" ");
}
return tokens;
}
String[][] sentences = readPTB();
System.out.println("# sentences: " + sentences.length);
# sentences: 42068
在读取训练集之后,我们为语料库构建了一个词表,其中出现次数少于10次的任何单词都将由“<unk>”词元替换。请注意,原始数据集还包含表示稀有(未知)单词的“<unk>”词元。
Vocab vocab = new Vocab(sentences, 10, new String[] {});
System.out.println(vocab.length());
6719
14.3.2. 下采样¶
文本数据通常有“the”、“a”和“in”等高频词:它们在非常大的语料库中甚至可能出现数十亿次。然而,这些词经常在上下文窗口中与许多不同的词共同出现,提供的有用信息很少。例如,考虑上下文窗口中的词“chip”:直观地说,它与低频单词“intel”的共现比与高频单词“a”的共现在训练中更有用。此外,大量(高频)单词的训练速度很慢。因此,当训练词嵌入模型时,可以对高频单词进行下采样 [Mikolov et al., 2013b]。具体地说,数据集中的每个词\(w_i\)将有概率地被丢弃
其中\(f(w_i)\)是\(w_i\)的词数与数据集中的总词数的比率,常量\(t\)是超参数(在实验中为\(10^{-4}\))。我们可以看到,只有当相对比率\(f(w_i) > t\)时,(高频)词\(w_i\)才能被丢弃,且该词的相对比率越高,被丢弃的概率就越大。
public static boolean keep(String token, LinkedHashMap<?, Integer> counter, int numTokens) {
// Return True if to keep this token during subsampling
return new Random().nextFloat() < Math.sqrt(1e-4 / counter.get(token) * numTokens);
}
public static String[][] subSampling(String[][] sentences, Vocab vocab) {
for (int i = 0; i < sentences.length; i++) {
for (int j = 0; j < sentences[i].length; j++) {
sentences[i][j] = vocab.idxToToken.get(vocab.getIdx(sentences[i][j]));
}
}
// Count the frequency for each word
LinkedHashMap<?, Integer> counter = vocab.countCorpus2D(sentences);
int numTokens = 0;
for (Integer value : counter.values()) {
numTokens += value;
}
// Now do the subsampling
String[][] output = new String[sentences.length][];
for (int i = 0; i < sentences.length; i++) {
ArrayList<String> tks = new ArrayList<>();
for (int j = 0; j < sentences[i].length; j++) {
String tk = sentences[i][j];
if (keep(sentences[i][j], counter, numTokens)) {
tks.add(tk);
}
}
output[i] = tks.toArray(new String[tks.size()]);
}
return output;
}
String[][] subsampled = subSampling(sentences, vocab);
下面的代码片段绘制了下采样前后每句话的词元数量的直方图。正如预期的那样,下采样通过删除高频词来显著缩短句子,这将使训练加速。
double[] y1 = new double[sentences.length];
for (int i = 0; i < sentences.length; i++) y1[i] = sentences[i].length;
double[] y2 = new double[subsampled.length];
for (int i = 0; i < subsampled.length; i++) y2[i] = subsampled[i].length;
HistogramTrace trace1 =
HistogramTrace.builder(y1).opacity(.75).name("origin").nBinsX(20).build();
HistogramTrace trace2 =
HistogramTrace.builder(y2).opacity(.75).name("subsampled").nBinsX(20).build();
Layout layout =
Layout.builder()
.barMode(Layout.BarMode.GROUP)
.showLegend(true)
.xAxis(Axis.builder().title("# tokens per sentence").build())
.yAxis(Axis.builder().title("count").build())
.build();
new Figure(layout, trace1, trace2);
对于单个词元,高频词“the”的采样率不到1/20。
public static String compareCounts(String token, String[][] sentences, String[][] subsampled) {
int beforeCount = 0;
for (int i = 0; i < sentences.length; i++) {
for (int j = 0; j < sentences[i].length; j++) {
if (sentences[i][j].equals(token)) beforeCount += 1;
}
}
int afterCount = 0;
for (int i = 0; i < subsampled.length; i++) {
for (int j = 0; j < subsampled[i].length; j++) {
if (subsampled[i][j].equals(token)) afterCount += 1;
}
}
return "# of \"the\": before=" + beforeCount + ", after=" + afterCount;
}
System.out.println(compareCounts("the", sentences, subsampled));
# of "the": before=50770, after=2111
相比之下,低频词“join”则被完全保留。
System.out.println(compareCounts("join", sentences, subsampled));
# of "the": before=45, after=45
在下采样之后,我们将词元映射到它们在语料库中的索引。
Integer[][] corpus = new Integer[subsampled.length][];
for (int i = 0; i < subsampled.length; i++) {
corpus[i] = vocab.getIdxs(subsampled[i]);
}
for (int i = 0; i < 3; i++) {
System.out.println(Arrays.toString(corpus[i]));
}
[]
[71, 2115, 5]
[5277, 3054, 1580]
14.3.3. 中心词和上下文词的提取¶
下面的get_centers_and_contexts
函数从corpus
中提取所有中心词及其上下文词。它随机采样1到max_window_size
之间的整数作为上下文窗口。对于任一中心词,与其距离不超过采样上下文窗口大小的词为其上下文词。
public static Pair<ArrayList<Integer>, ArrayList<ArrayList<Integer>>> getCentersAndContext(
Integer[][] corpus, int maxWindowSize) {
ArrayList<Integer> centers = new ArrayList<>();
ArrayList<ArrayList<Integer>> contexts = new ArrayList<>();
for (Integer[] line : corpus) {
// Each sentence needs at least 2 words to form a "central target word
// - context word" pair
if (line.length < 2) {
continue;
}
centers.addAll(Arrays.asList(line));
for (int i = 0; i < line.length; i++) { // Context window centered at i
int windowSize = new Random().nextInt(maxWindowSize - 1) + 1;
List<Integer> indices =
IntStream.range(
Math.max(0, i - windowSize),
Math.min(line.length, i + 1 + windowSize))
.boxed()
.collect(Collectors.toList());
// Exclude the central target word from the context words
indices.remove(indices.indexOf(i));
ArrayList<Integer> context = new ArrayList<>();
for (Integer idx : indices) {
context.add(line[idx]);
}
contexts.add(context);
}
}
return new Pair<>(centers, contexts);
}
接下来,我们创建一个人工数据集,分别包含7个和3个单词的两个句子。设置最大上下文窗口大小为2,并打印所有中心词及其上下文词。
Integer[][] tinyDataset =
new Integer[][] {
IntStream.range(0, 7)
.boxed()
.collect(Collectors.toList())
.toArray(new Integer[] {}),
IntStream.range(7, 10)
.boxed()
.collect(Collectors.toList())
.toArray(new Integer[] {})
};
System.out.println("dataset " + Arrays.deepToString(tinyDataset));
Pair<ArrayList<Integer>, ArrayList<ArrayList<Integer>>> centerContextPair =
getCentersAndContext(tinyDataset, 2);
for (int i = 0; i < centerContextPair.getValue().size(); i++) {
System.out.println(
"Center "
+ centerContextPair.getKey().get(i)
+ " has contexts"
+ centerContextPair.getValue().get(i));
}
dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
Center 0 has contexts[1]
Center 1 has contexts[0, 2]
Center 2 has contexts[1, 3]
Center 3 has contexts[2, 4]
Center 4 has contexts[3, 5]
Center 5 has contexts[4, 6]
Center 6 has contexts[5]
Center 7 has contexts[8]
Center 8 has contexts[7, 9]
Center 9 has contexts[8]
在PTB数据集上进行训练时,我们将最大上下文窗口大小设置为5。下面提取数据集中的所有中心词及其上下文词。
centerContextPair = getCentersAndContext(corpus, 5);
ArrayList<Integer> allCenters = centerContextPair.getKey();
ArrayList<ArrayList<Integer>> allContexts = centerContextPair.getValue();
System.out.println("中心词-上下文词对”的数量:" + allCenters.size());
中心词-上下文词对”的数量:352849
14.3.4. 负采样¶
我们使用负采样进行近似训练。为了根据预定义的分布对噪声词进行采样,我们定义以下RandomGenerator
类,其中(可能未规范化的)采样分布通过变量samplingWeights
传递。
public class RandomGenerator {
/* Draw a random int in [0, n] according to n sampling weights. */
private List<Integer> population;
private List<Double> samplingWeights;
private List<Integer> candidates;
private List<org.apache.commons.math3.util.Pair<Integer, Double>> pmf;
private int i;
public RandomGenerator(List<Double> samplingWeights) {
this.population =
IntStream.range(0, samplingWeights.size()).boxed().collect(Collectors.toList());
this.samplingWeights = samplingWeights;
this.candidates = new ArrayList<>();
this.i = 0;
this.pmf = new ArrayList<>();
for (int i = 0; i < samplingWeights.size(); i++) {
this.pmf.add(new org.apache.commons.math3.util.Pair(this.population.get(i), this.samplingWeights.get(i).doubleValue()));
}
}
public Integer draw() {
if (this.i == this.candidates.size()) {
this.candidates =
Arrays.asList((Integer[]) new EnumeratedDistribution(this.pmf).sample(10000, new Integer[] {}));
this.i = 0;
}
this.i += 1;
return this.candidates.get(this.i - 1);
}
}
例如,我们可以在索引1、2和3中绘制10个随机变量\(X\),采样概率为\(P(X=1)=2/9, P(X=2)=3/9\)和\(P(X=3)=4/9\),如下所示。
RandomGenerator generator =
new RandomGenerator(Arrays.asList(new Double[] {2.0, 3.0, 4.0}));
Integer[] generatorOutput = new Integer[10];
for (int i = 0; i < 10; i++) {
generatorOutput[i] = generator.draw();
}
System.out.println(Arrays.toString(generatorOutput));
[2, 1, 2, 2, 1, 1, 1, 2, 1, 0]
对于一对中心词和上下文词,我们随机抽取了K
个(实验中为5个)噪声词。根据word2vec论文中的建议,将噪声词\(w\)的采样概率\(P(w)\)设置为其在字典中的相对频率,其幂为0.75
[Mikolov et al., 2013b]。
public static ArrayList<ArrayList<Integer>> getNegatives(
ArrayList<ArrayList<Integer>> allContexts, Integer[][] corpus, int K) {
LinkedHashMap<?, Integer> counter = Vocab.countCorpus2D(corpus);
ArrayList<Double> samplingWeights = new ArrayList<>();
for (Map.Entry<?, Integer> entry : counter.entrySet()) {
samplingWeights.add(Math.pow(entry.getValue(), .75));
}
ArrayList<ArrayList<Integer>> allNegatives = new ArrayList<>();
RandomGenerator generator = new RandomGenerator(samplingWeights);
for (ArrayList<Integer> contexts : allContexts) {
ArrayList<Integer> negatives = new ArrayList<>();
while (negatives.size() < contexts.size() * K) {
Integer neg = generator.draw();
// Noise words cannot be context words
if (!contexts.contains(neg)) {
negatives.add(neg);
}
}
allNegatives.add(negatives);
}
return allNegatives;
}
ArrayList<ArrayList<Integer>> allNegatives = getNegatives(allContexts, corpus, 5);
14.3.5. 小批量加载训练实例¶
在提取所有中心词及其上下文词和采样噪声词后,将它们转换成小批量的样本,在训练过程中可以迭代加载。
在小批量中,\(i^\mathrm{th}\)个样本包括中心词及其\(n_i\)个上下文词和\(m_i\)个噪声词。由于上下文窗口大小不同,\(n_i+m_i\)对于不同的\(i\)是不同的。因此,对于每个样本,我们在contexts_negatives
个变量中将其上下文词和噪声词连结起来,并填充零,直到连结长度达到\(\max_i n_i+m_i\)(max_len
)。为了在计算损失时排除填充,我们定义了掩码变量masks
。在masks
中的元素和contexts_negatives
中的元素之间存在一一对应关系,其中masks
中的0(否则为1)对应于contexts_negatives
中的填充。
为了区分正反例,我们在contexts_negatives
中通过一个labels
变量将上下文词与噪声词分开。类似于masks
,在labels
中的元素和contexts_negatives
中的元素之间也存在一一对应关系,其中labels
中的1(否则为0)对应于contexts_negatives
中的上下文词的正例。
上述思想在下面的batchify
函数中实现。其输入data
是长度等于批量大小的列表,其中每个元素是由中心词center
、其上下文词context
和其噪声词negative
组成的样本。此函数返回一个可以在训练期间加载用于计算的小批量,例如包括掩码变量。
public static NDList batchifyData(NDList[] data) {
NDList centers = new NDList();
NDList contextsNegatives = new NDList();
NDList masks = new NDList();
NDList labels = new NDList();
long maxLen = 0;
for (NDList ndList : data) { // center, context, negative = ndList
maxLen =
Math.max(
maxLen,
ndList.get(1).countNonzero().getLong()
+ ndList.get(2).countNonzero().getLong());
}
for (NDList ndList : data) { // center, context, negative = ndList
NDArray center = ndList.get(0);
NDArray context = ndList.get(1);
NDArray negative = ndList.get(2);
int count = 0;
for (int i = 0; i < context.size(); i++) {
// If a 0 is found, we want to stop adding these
// values to NDArray
if (context.get(i).getInt() == 0) {
break;
}
contextsNegatives.add(context.get(i).reshape(1));
masks.add(manager.create(1).reshape(1));
labels.add(manager.create(1).reshape(1));
count += 1;
}
for (int i = 0; i < negative.size(); i++) {
// If a 0 is found, we want to stop adding these
// values to NDArray
if (negative.get(i).getInt() == 0) {
break;
}
contextsNegatives.add(negative.get(i).reshape(1));
masks.add(manager.create(1).reshape(1));
labels.add(manager.create(0).reshape(1));
count += 1;
}
// Fill with zeroes remaining array
while (count != maxLen) {
contextsNegatives.add(manager.create(0).reshape(1));
masks.add(manager.create(0).reshape(1));
labels.add(manager.create(0).reshape(1));
count += 1;
}
// Add this NDArrays to output NDArrays
centers.add(center.reshape(1));
}
return new NDList(
NDArrays.concat(centers).reshape(data.length, -1),
NDArrays.concat(contextsNegatives).reshape(data.length, -1),
NDArrays.concat(masks).reshape(data.length, -1),
NDArrays.concat(labels).reshape(data.length, -1));
}
让我们使用一个小批量的两个样本来测试此函数。
NDList x1 =
new NDList(
manager.create(new int[] {1}),
manager.create(new int[] {2, 2}),
manager.create(new int[] {3, 3, 3, 3}));
NDList x2 =
new NDList(
manager.create(new int[] {1}),
manager.create(new int[] {2, 2, 2}),
manager.create(new int[] {3, 3}));
NDList batchedData = batchifyData(new NDList[] {x1, x2});
String[] names = new String[] {"centers", "contexts_negatives", "masks", "labels"};
for (int i = 0; i < batchedData.size(); i++) {
System.out.println(names[i] + " shape: " + batchedData.get(i));
}
centers shape: ND: (2, 1) gpu(0) int32
[[ 1],
[ 1],
]
contexts_negatives shape: ND: (2, 6) gpu(0) int32
[[ 2, 2, 3, 3, 3, 3],
[ 2, 2, 2, 3, 3, 0],
]
masks shape: ND: (2, 6) gpu(0) int32
[[ 1, 1, 1, 1, 1, 1],
[ 1, 1, 1, 1, 1, 0],
]
labels shape: ND: (2, 6) gpu(0) int32
[[ 1, 1, 0, 0, 0, 0],
[ 1, 1, 1, 0, 0, 0],
]
14.3.6. 整合代码¶
最后,我们定义了读取PTB数据集并返回数据迭代器和词表的load_data_ptb
函数。
public static NDList convertNDArray(Object[] data, NDManager manager) {
ArrayList<Integer> centers = (ArrayList<Integer>) data[0];
ArrayList<ArrayList<Integer>> contexts = (ArrayList<ArrayList<Integer>>) data[1];
ArrayList<ArrayList<Integer>> negatives = (ArrayList<ArrayList<Integer>>) data[2];
// Create centers NDArray
NDArray centersNDArray = manager.create(centers.stream().mapToInt(i -> i).toArray());
// Create contexts NDArray
int maxLen = 0;
for (ArrayList<Integer> context : contexts) {
maxLen = Math.max(maxLen, context.size());
}
// Fill arrays with 0s to all have same lengths and be able to create NDArray
for (ArrayList<Integer> context : contexts) {
while (context.size() != maxLen) {
context.add(0);
}
}
NDArray contextsNDArray =
manager.create(
contexts.stream()
.map(u -> u.stream().mapToInt(i -> i).toArray())
.toArray(int[][]::new));
// Create negatives NDArray
maxLen = 0;
for (ArrayList<Integer> negative : negatives) {
maxLen = Math.max(maxLen, negative.size());
}
// Fill arrays with 0s to all have same lengths and be able to create NDArray
for (ArrayList<Integer> negative : negatives) {
while (negative.size() != maxLen) {
negative.add(0);
}
}
NDArray negativesNDArray =
manager.create(
negatives.stream()
.map(u -> u.stream().mapToInt(i -> i).toArray())
.toArray(int[][]::new));
return new NDList(centersNDArray, contextsNDArray, negativesNDArray);
}
public static Pair<ArrayDataset, Vocab> loadDataPTB(
int batchSize, int maxWindowSize, int numNoiseWords, NDManager manager)
throws IOException, TranslateException {
String[][] sentences = readPTB();
Vocab vocab = new Vocab(sentences, 10, new String[] {});
String[][] subSampled = subSampling(sentences, vocab);
Integer[][] corpus = new Integer[subSampled.length][];
for (int i = 0; i < subSampled.length; i++) {
corpus[i] = vocab.getIdxs(subSampled[i]);
}
Pair<ArrayList<Integer>, ArrayList<ArrayList<Integer>>> pair =
getCentersAndContext(corpus, maxWindowSize);
ArrayList<ArrayList<Integer>> negatives =
getNegatives(pair.getValue(), corpus, numNoiseWords);
NDList ndArrays =
convertNDArray(new Object[] {pair.getKey(), pair.getValue(), negatives}, manager);
ArrayDataset dataset =
new ArrayDataset.Builder()
.setData(ndArrays.get(0), ndArrays.get(1), ndArrays.get(2))
.optDataBatchifier(
new Batchifier() {
@Override
public NDList batchify(NDList[] ndLists) {
return batchifyData(ndLists);
}
@Override
public NDList[] unbatchify(NDList ndList) {
return new NDList[0];
}
})
.setSampling(batchSize, true)
.build();
return new Pair<>(dataset, vocab);
}
让我们打印数据迭代器的第一个小批量。
Pair<ArrayDataset, Vocab> datasetVocab = loadDataPTB(512, 5, 5, manager);
ArrayDataset dataset = datasetVocab.getKey();
vocab = datasetVocab.getValue();
Batch batch = dataset.getData(manager).iterator().next();
for (int i = 0; i < batch.getData().size(); i++) {
System.out.println(names[i] + " shape: " + batch.getData().get(i).getShape());
}
centers shape: (512, 1)
contexts_negatives shape: (512, 48)
masks shape: (512, 48)
labels shape: (512, 48)
14.3.7. 小结¶
高频词在训练中可能不是那么有用。我们可以对他们进行下采样,以便在训练中加快速度。
为了提高计算效率,我们以小批量方式加载样本。我们可以定义其他变量来区分填充标记和非填充标记,以及正例和负例。
14.3.8. 练习¶
如果不使用下采样,本节中代码的运行时间会发生什么变化?
RandomGenerator
类缓存k
个随机采样结果。将k
设置为其他值,看看它如何影响数据加载速度。本节代码中的哪些其他超参数可能会影响数据加载速度?